Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 232: 102560, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097036

RESUMO

Damaged or dysfunctional neural circuits can be replaced after a lesion by axon sprouting and collateral growth from undamaged neurons. Unfortunately, these new connections are often disorganized and rarely produce clinical improvement. Here we investigate how to promote post-lesion axonal collateral growth, while retaining correct cellular targeting. In the mouse olivocerebellar path, brain-derived neurotrophic factor (BDNF) induces correctly-targeted post-lesion cerebellar reinnervation by remaining intact inferior olivary axons (climbing fibers). In this study we identified cellular processes through which BDNF induces this repair. BDNF injection into the denervated cerebellum upregulates the transcription factor Pax3 in inferior olivary neurons and induces rapid climbing fiber sprouting. Pax3 in turn increases polysialic acid-neural cell adhesion molecule (PSA-NCAM) in the sprouting climbing fiber path, facilitating collateral outgrowth and pathfinding to reinnervate the correct targets, cerebellar Purkinje cells. BDNF-induced reinnervation can be reproduced by olivary Pax3 overexpression, and abolished by olivary Pax3 knockdown, suggesting that Pax3 promotes axon growth and guidance through upregulating PSA-NCAM, probably on the axon's growth cone. These data indicate that restricting growth-promotion to potential reinnervating afferent neurons, as opposed to stimulating the whole circuit or the injury site, allows axon growth and appropriate guidance, thus accurately rebuilding a neural circuit.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Moléculas de Adesão de Célula Nervosa , Animais , Camundongos , Axônios/fisiologia , Cerebelo
2.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003643

RESUMO

Neurological and psychiatric diseases generally have no cure, so innovative non-pharmacological treatments, including non-invasive brain stimulation, are interesting therapeutic tools as they aim to trigger intrinsic neural repair mechanisms. A common brain stimulation technique involves the application of pulsed magnetic fields to affected brain regions. However, investigations of magnetic brain stimulation are complicated by the use of many different stimulation parameters. Magnetic brain stimulation is usually divided into two poorly connected approaches: (1) clinically used high-intensity stimulation (0.5-2 Tesla, T) and (2) experimental or epidemiologically studied low-intensity stimulation (µT-mT). Human tests of both approaches are reported to have beneficial outcomes, but the underlying biology is unclear, and thus optimal stimulation parameters remain ill defined. Here, we aim to bring together what is known about the biology of magnetic brain stimulation from human, animal, and in vitro studies. We identify the common effects of different stimulation protocols; show how different types of pulsed magnetic fields interact with nervous tissue; and describe cellular mechanisms underlying their effects-from intracellular signalling cascades, through synaptic plasticity and the modulation of network activity, to long-term structural changes in neural circuits. Recent advances in magneto-biology show clear mechanisms that may explain low-intensity stimulation effects in the brain. With its large breadth of stimulation parameters, not available to high-intensity stimulation, low-intensity focal magnetic stimulation becomes a potentially powerful treatment tool for human application.


Assuntos
Encéfalo , Estimulação Magnética Transcraniana , Animais , Humanos , Estimulação Magnética Transcraniana/métodos , Encéfalo/fisiologia , Plasticidade Neuronal , Fenômenos Magnéticos
3.
Front Cell Neurosci ; 17: 1108339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066074

RESUMO

Errors of cerebellar development are increasingly acknowledged as risk factors for neuro-developmental disorders (NDDs), such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and schizophrenia. Evidence has been assembled from cerebellar abnormalities in autistic patients, as well as a range of genetic mutations identified in human patients that affect the cerebellar circuit, particularly Purkinje cells, and are associated with deficits of motor function, learning and social behavior; traits that are commonly associated with autism and schizophrenia. However, NDDs, such as ASD and schizophrenia, also include systemic abnormalities, e.g., chronic inflammation, abnormal circadian rhythms etc., which cannot be explained by lesions that only affect the cerebellum. Here we bring together phenotypic, circuit and structural evidence supporting the contribution of cerebellar dysfunction in NDDs and propose that the transcription factor Retinoid-related Orphan Receptor alpha (RORα) provides the missing link underlying both cerebellar and systemic abnormalities observed in NDDs. We present the role of RORα in cerebellar development and how the abnormalities that occur due to RORα deficiency could explain NDD symptoms. We then focus on how RORα is linked to NDDs, particularly ASD and schizophrenia, and how its diverse extra-cerebral actions can explain the systemic components of these diseases. Finally, we discuss how RORα-deficiency is likely a driving force for NDDs through its induction of cerebellar developmental defects, which in turn affect downstream targets, and its regulation of extracerebral systems, such as inflammation, circadian rhythms, and sexual dimorphism.

4.
J Physiol ; 600(17): 4019-4037, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35899578

RESUMO

Magnetic brain stimulation is a promising treatment for neurological and psychiatric disorders. However, a better understanding of its effects at the individual neuron level is essential to improve its clinical application. We combined focal low-intensity repetitive transcranial magnetic stimulation (LI-rTMS) to the rat somatosensory cortex with intracellular recordings of subjacent pyramidal neurons in vivo. Continuous 10 Hz LI-rTMS reliably evoked firing at ∼4-5 Hz during the stimulation period and induced durable attenuation of synaptic activity and spontaneous firing in cortical neurons, through membrane hyperpolarization and a reduced intrinsic excitability. However, inducing firing in individual neurons by repeated intracellular current injection did not reproduce the effects of LI-rTMS on neuronal properties. These data provide a novel understanding of mechanisms underlying magnetic brain stimulation showing that, in addition to inducing biochemical plasticity, even weak magnetic fields can activate neurons and enduringly modulate their excitability. KEY POINTS: Repetitive transcranial magnetic stimulation (rTMS) is a promising technique to alleviate neurological and psychiatric disorders caused by alterations in cortical activity. Our knowledge of the cellular mechanisms underlying rTMS-based therapies remains limited. We combined in vivo focal application of low-intensity rTMS (LI-rTMS) to the rat somatosensory cortex with intracellular recordings of subjacent pyramidal neurons to characterize the effects of weak magnetic fields at single cell level. Ten minutes of LI-rTMS delivered at 10 Hz reliably evoked action potentials in cortical neurons during the stimulation period, and induced durable attenuation of their intrinsic excitability, synaptic activity and spontaneous firing. These results help us better understand the mechanisms of weak magnetic stimulation and should allow optimizing the effectiveness of stimulation protocols for clinical use.


Assuntos
Transtornos Mentais , Neocórtex , Animais , Potencial Evocado Motor/fisiologia , Humanos , Fenômenos Magnéticos , Neurônios/fisiologia , Ratos , Estimulação Magnética Transcraniana/métodos
5.
Elife ; 102021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34730085

RESUMO

Synaptic transmission, connectivity, and dendritic morphology mature in parallel during brain development and are often disrupted in neurodevelopmental disorders. Yet how these changes influence the neuronal computations necessary for normal brain function are not well understood. To identify cellular mechanisms underlying the maturation of synaptic integration in interneurons, we combined patch-clamp recordings of excitatory inputs in mouse cerebellar stellate cells (SCs), three-dimensional reconstruction of SC morphology with excitatory synapse location, and biophysical modeling. We found that postnatal maturation of postsynaptic strength was homogeneously reduced along the somatodendritic axis, but dendritic integration was always sublinear. However, dendritic branching increased without changes in synapse density, leading to a substantial gain in distal inputs. Thus, changes in synapse distribution, rather than dendrite cable properties, are the dominant mechanism underlying the maturation of neuronal computation. These mechanisms favor the emergence of a spatially compartmentalized two-stage integration model promoting location-dependent integration within dendritic subunits.


Assuntos
Cerebelo/fisiologia , Interneurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Cerebelo/crescimento & desenvolvimento , Feminino , Interneurônios/metabolismo , Masculino , Camundongos
6.
PLoS One ; 15(12): e0243038, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270696

RESUMO

PEMF (Pulsed Electromagnetic Field) stimulation has been used for therapeutic purposes for over 50 years including in the treatment of memory loss, depression, alleviation of pain, bone and wound healing, and treatment of certain cancers. However, the underlying cellular mechanisms mediating these effects have remained poorly understood. In particular, because magnetic field pulses will induce electric currents in the stimulated tissue, it is unclear whether the observed effects are due to the magnetic or electric component of the stimulation. Recently, it has been shown that PEMFs stimulate the formation of ROS (reactive oxygen species) in human cell cultures by a mechanism that requires cryptochrome, a putative magnetosensor. Here we show by qPCR analysis of ROS-regulated gene expression that simply removing cell cultures from the Earth's geomagnetic field by placing them in a Low-Level Field condition induces similar effects on ROS signaling as does exposure of cells to PEMF. This effect can be explained by the so-called Radical Pair mechanism, which provides a quantum physical means by which the rates and product yields (e.g. ROS) of biochemical redox reactions may be modulated by magnetic fields. Since transient cancelling of the Earth's magnetic field can in principle be achieved by PEMF exposure, we propose that the therapeutic effects of PEMFs may be explained by the ensuing modulation of ROS synthesis. Our results could lead to significant improvements in the design and therapeutic applications of PEMF devices.


Assuntos
Regulação da Expressão Gênica , Espécies Reativas de Oxigênio , Células HEK293 , Humanos , Magnetoterapia , Proteínas dos Microfilamentos/genética
7.
PLoS Biol ; 16(10): e2006229, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30278045

RESUMO

Exposure to man-made electromagnetic fields (EMFs), which increasingly pollute our environment, have consequences for human health about which there is continuing ignorance and debate. Whereas there is considerable ongoing concern about their harmful effects, magnetic fields are at the same time being applied as therapeutic tools in regenerative medicine, oncology, orthopedics, and neurology. This paradox cannot be resolved until the cellular mechanisms underlying such effects are identified. Here, we show by biochemical and imaging experiments that exposure of mammalian cells to weak pulsed electromagnetic fields (PEMFs) stimulates rapid accumulation of reactive oxygen species (ROS), a potentially toxic metabolite with multiple roles in stress response and cellular ageing. Following exposure to PEMF, cell growth is slowed, and ROS-responsive genes are induced. These effects require the presence of cryptochrome, a putative magnetosensor that synthesizes ROS. We conclude that modulation of intracellular ROS via cryptochromes represents a general response to weak EMFs, which can account for either therapeutic or pathological effects depending on exposure. Clinically, our findings provide a rationale to optimize low field magnetic stimulation for novel therapeutic applications while warning against the possibility of harmful synergistic effects with environmental agents that further increase intracellular ROS.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Campos Magnéticos/efeitos adversos , Animais , Crescimento Celular , Proliferação de Células , Criptocromos , Drosophila , Células HEK293 , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
8.
Sci Rep ; 8(1): 10017, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968809

RESUMO

Different afferent synapse populations interact to control the specificity of connections during neuronal circuit maturation. The elimination of all but one climbing-fiber onto each Purkinje cell during the development of the cerebellar cortex is a particularly well studied example of synaptic refinement. The suppression of granule cell precursors by X irradiation during postnatal days 4 to 7 prevents this synaptic refinement, indicating a critical role for granule cells. Several studies of cerebellar development have suggested that synapse elimination has a first phase which is granule cell-independent and a second phase which is granule cell-dependent. In this study, we show that sufficiently-strong irradiation restricted to postnatal days 5 or 6 completely abolishes climbing fiber synaptic refinement, leaving the olivo-cerebellar circuit in its immature configuration in the adult, with up to 5 climbing fibers innervating the Purkinje cell in some cases. This implies that the putative early phase of climbing fiber synapse elimination can be blocked by irradiation-induced granule cell loss if this loss is sufficiently large, and thus indicates that the entire process of climbing fiber synapse elimination requires the presence of an adequate number of granule cells. The specific critical period for this effect appears to be directly related to the timing of Purkinje cell and granule cell development in different cerebellar lobules, indicating a close, spatiotemporal synchrony between granule-cell development and olivo-cerebellar synaptic maturation.


Assuntos
Células de Purkinje/fisiologia , Células de Purkinje/efeitos da radiação , Sinapses/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Axônios/fisiologia , Cerebelo/crescimento & desenvolvimento , Fenômenos Eletrofisiológicos , Feminino , Gravidez , Ratos , Ratos Wistar
9.
Front Neural Circuits ; 10: 85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27857683

RESUMO

Non-invasive brain stimulation (NIBS) by electromagnetic fields appears to benefit human neurological and psychiatric conditions, although the optimal stimulation parameters and underlying mechanisms remain unclear. Although, in vitro studies have begun to elucidate cellular mechanisms, stimulation is delivered by a range of coils (from commercially available human stimulation coils to laboratory-built circuits) so that the electromagnetic fields induced within the tissue to produce the reported effects are ill-defined. Here, we develop a simple in vitro stimulation device with plug-and-play features that allow delivery of a range of stimulation parameters. We chose to test low intensity repetitive magnetic stimulation (LI-rMS) delivered at three frequencies to hindbrain explant cultures containing the olivocerebellar pathway. We used computational modeling to define the parameters of a stimulation circuit and coil that deliver a unidirectional homogeneous magnetic field of known intensity and direction, and therefore a predictable electric field, to the target. We built the coil to be compatible with culture requirements: stimulation within an incubator; a flat surface allowing consistent position and magnetic field direction; location outside the culture plate to maintain sterility and no heating or vibration. Measurements at the explant confirmed the induced magnetic field was homogenous and matched the simulation results. To validate our system we investigated biological effects following LI-rMS at 1 Hz, 10 Hz and biomimetic high frequency, which we have previously shown induces neural circuit reorganization. We found that gene expression was modified by LI-rMS in a frequency-related manner. Four hours after a single 10-min stimulation session, the number of c-fos positive cells increased, indicating that our stimulation activated the tissue. Also, after 14 days of LI-rMS, the expression of genes normally present in the tissue was differentially modified according to the stimulation delivered. Thus we describe a simple magnetic stimulation device that delivers defined stimulation parameters to different neural systems in vitro. Such devices are essential to further understanding of the fundamental effects of magnetic stimulation on biological tissue and optimize therapeutic application of human NIBS.


Assuntos
Campos Eletromagnéticos , Desenho de Equipamento , Estimulação Física/métodos , Rombencéfalo/fisiologia , Estimulação Magnética Transcraniana/métodos , Animais , Técnicas In Vitro , Estimulação Física/instrumentação , Estimulação Magnética Transcraniana/instrumentação
10.
Mol Autism ; 6: 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26056561

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant impairment in reciprocal social interactions and communication coupled with stereotyped, repetitive behaviors and restricted interests. Although genomic and functional studies are beginning to reveal some of the genetic complexity and underlying pathobiology of ASD, the consistently reported male bias of ASD remains an enigma. We have recently proposed that retinoic acid-related orphan receptor alpha (RORA), which is reduced in the brain and lymphoblastoid cell lines of multiple cohorts of individuals with ASD and oppositely regulated by male and female hormones, might contribute to the sex bias in autism by differentially regulating target genes, including CYP19A1 (aromatase), in a sex-dependent manner that can also lead to elevated testosterone levels, a proposed risk factor for autism. METHODS: In this study, we examine sex differences in RORA and aromatase protein levels in cortical tissues of unaffected and affected males and females by re-analyzing pre-existing confocal immunofluorescence data from our laboratory. We further investigated the expression of RORA and its correlation with several of its validated transcriptional targets in the orbital frontal cortex and cerebellum as a function of development using RNAseq data from the BrainSpan Atlas of the Developing Human Brain. In a pilot study, we also analyzed the expression of Rora and the same transcriptional targets in the cortex and cerebellum of adult wild-type male and female C57BL/6 mice. RESULTS: Our findings suggest that Rora/RORA and several of its transcriptional targets may exhibit sexually dimorphic expression in certain regions of the brain of both mice and humans. Interestingly, the correlation coefficients between Rora expression and that of its targets are much higher in the cortex of male mice relative to that of female mice. A strong positive correlation between the levels of RORA and aromatase proteins is also seen in the cortex of control human males and females as well as ASD males, but not ASD females. CONCLUSIONS: Based on these studies, we suggest that disruption of Rora/RORA expression may have a greater impact on males, since sex differences in the correlation of RORA and target gene expression indicate that RORA-deficient males may experience greater dysregulation of genes relevant to ASD in certain brain regions during development.

12.
Brain Stimul ; 8(1): 114-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25444593

RESUMO

BACKGROUND: Repetitive transcranial magnetic stimulation is increasingly used as a treatment for neurological dysfunction. Therapeutic effects have been reported for low intensity rTMS (LI-rTMS) although these remain poorly understood. OBJECTIVE: Our study describes for the first time a systematic comparison of the cellular and molecular changes in neurons in vitro induced by low intensity magnetic stimulation at different frequencies. METHODS: We applied 5 different low intensity repetitive magnetic stimulation (LI-rMS) protocols to neuron-enriched primary cortical cultures for 4 days and assessed survival, and morphological and biochemical change. RESULTS: We show pattern-specific effects of LI-rMS: simple frequency pulse trains (10 Hz and 100 Hz) impaired cell survival, while more complex stimulation patterns (theta-burst and a biomimetic frequency) did not. Moreover, only 1 Hz stimulation modified neuronal morphology, inhibiting neurite outgrowth. To understand mechanisms underlying these differential effects, we measured intracellular calcium concentration during LI-rMS and subsequent changes in gene expression. All LI-rMS frequencies increased intracellular calcium, but rather than influx from the extracellular milieu typical of depolarization, all frequencies induced calcium release from neuronal intracellular stores. Furthermore, we observed pattern-specific changes in expression of genes related to apoptosis and neurite outgrowth, consistent with our morphological data on cell survival and neurite branching. CONCLUSIONS: Thus, in addition to the known effects on cortical excitability and synaptic plasticity, our data demonstrate that LI-rMS can change the survival and structural complexity of neurons. These findings provide a cellular and molecular framework for understanding what low intensity magnetic stimulation may contribute to human rTMS outcomes.


Assuntos
Sobrevivência Celular/fisiologia , Córtex Cerebral/fisiologia , Campos Eletromagnéticos , Neurônios/fisiologia , Animais , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Expressão Gênica , Camundongos , Neuritos/fisiologia , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Cultura Primária de Células , Estimulação Magnética Transcraniana
13.
J Neurosci ; 34(32): 10780-92, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25100609

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5(-/-) (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5(-/-) mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5(-/-) mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5(-/-) mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS.


Assuntos
Encefalopatias , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estimulação Magnética Transcraniana , Regulação para Cima/fisiologia , Córtex Visual/anormalidades , Análise de Variância , Animais , Biofísica , Encefalopatias/genética , Encefalopatias/patologia , Encefalopatias/terapia , Mapeamento Encefálico , Fator Neurotrófico Derivado do Encéfalo/genética , Efrina-A2/deficiência , Efrina-A2/genética , Efrina-A5/deficiência , Efrina-A5/genética , Corpos Geniculados/anormalidades , Corpos Geniculados/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/anormalidades , Vias Neurais/patologia , RNA Mensageiro/metabolismo , Regulação para Cima/genética
14.
J Neurosci ; 33(22): 9546-62, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23719821

RESUMO

Neuronal maturation during development is a multistep process regulated by transcription factors. The transcription factor RORα (retinoic acid-related orphan receptor α) is necessary for early Purkinje cell (PC) maturation but is also expressed throughout adulthood. To identify the role of RORα in mature PCs, we used Cre-lox mouse genetic tools in vivo that delete it specifically from PCs between postnatal days 10-21. Up to 14 d of age, differences between mutant and control PCs were not detectable: both were mono-innervated by climbing fibers (CFs) extending along their well-developed dendrites with spiny branchlets. By week 4, mutant mice were ataxic, some PCs had died, and remaining PC soma and dendrites were atrophic, with almost complete disappearance of spiny branchlets. The innervation pattern of surviving RORα-deleted PCs was abnormal with several immature characteristics. Notably, multiple functional CF innervation was reestablished on these mature PCs, simultaneously with the relocation of CF contacts to the PC soma and their stem dendrite. This morphological modification of CF contacts could be induced even later, using lentivirus-mediated depletion of rora from adult PCs. These data show that the late postnatal expression of RORα cell-autonomously regulates the maintenance of PC dendritic complexity, and the CF innervation status of the PC (dendritic vs somatic contacts, and mono-innervation vs multi-innervation). Thus, the differentiation state of adult neurons is under the control of transcription factors; and in their absence, adult neurons lose their mature characteristics and acquire some characteristics of an earlier developmental stage.


Assuntos
Fibras Nervosas/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Células de Purkinje/fisiologia , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Comportamento Animal/fisiologia , Contagem de Células , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , DNA/genética , Fatores de Transcrição Forkhead/genética , Vetores Genéticos , Humanos , Imuno-Histoquímica , Relações Interpessoais , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Força Muscular/genética , Força Muscular/fisiologia , Mutação/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Reação em Cadeia da Polimerase , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Proteínas Repressoras/genética , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética
15.
Cerebellum ; 12(3): 319-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23325508

RESUMO

The assembly of neural circuits involves multiple sequential steps, in particular the formation and maturation of synaptic connections. This often prolonged process involves several stages including the appropriate morphological and physiological maturation of each synaptic partner as well as their mutual interaction in order to ensure correct cellular and subcellular targeting. Understanding the processes involved becomes critical if neural circuits are to be appropriately reassembled following lesion, atrophy or neurodegeneration. We study the climbing fibre to Purkinje cell synapse as an example of a neural circuit which undergoes initial synaptic formation, selective stabilisation and elimination of redundant connections, in order to better understand the relative roles of each synaptic partner in the process of synaptogenesis and post-lesion synapse reformation. In particular, we are interested in the molecules which may underlie these processes. Here, we present data showing that the maturational state of both the target Purkinje cell and the climbing fibre axon influence their capacity for synapse formation. The climbing fibre retains some ability to recapitulate developmental processes irrespective of its maturational state. In contrast, the experience of synaptic formation and selective stabilisation/elimination permanently changes the Purkinje cell so that it cannot be repeated. Thus, if the climbing fibre-Purkinje cell synapse is recreated after the period of normal maturation, the process of synaptic competition, involving the gradual weakening of one climbing fibre synapse and stabilisation of another, no longer takes place. Moreover, we show that these processes of synaptic competition can only proceed during a specific developmental phase. To understand why these changes occur, we have investigated the role of molecules involved in the development of the olivocerebellar path and show that brain-derived neurotrophic factor, through activation of its receptor TrkB, as well as polysialated neural cell adhesion molecule and the transcription factor RORα regulate these processes.


Assuntos
Cerebelo/citologia , Fibras Nervosas/fisiologia , Células de Purkinje/fisiologia , Sinapses/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares , Ácidos Siálicos/metabolismo
16.
FASEB J ; 26(4): 1593-606, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22223750

RESUMO

Although the organization of neuronal circuitry is shaped by activity patterns, the capacity to modify and/or optimize the structure and function of whole projection pathways using external stimuli is poorly defined. We investigate whether neuronal activity induced by pulsed magnetic fields (PMFs) alters brain structure and function. We delivered low-intensity PMFs to the posterior cranium of awake, unrestrained mice (wild-type and ephrin-A2A5(-/-)) that have disorganized retinocollicular circuitry and associated visuomotor deficits. Control groups of each genotype received sham stimulation. Following daily stimulation for 14 d, we measured biochemical, structural (anterograde tracing), and functional (electrophysiology and behavior) changes in the retinocollicular projection. PMFs induced BDNF, GABA, and nNOS expression in the superior colliculus and retina of wild-type and ephrin-A2A5(-/-) mice. Furthermore, in ephrin-A2A5(-/-) mice, PMFs corrected abnormal neuronal responses and selectively removed inaccurate ectopic axon terminals to improve structural and functional organization of their retinocollicular projection and restore normal visual tracking behavior. In contrast, PMFs did not alter the structure or function of the normal projection in wild-type mice. Sham PMF stimulation had no effect on any mice. Thus, PMF-induced biochemical changes are congruent with its capacity to facilitate beneficial reorganization of abnormal neural circuits without disrupting normal connectivity and function.


Assuntos
Comportamento Animal/fisiologia , Rede Nervosa/anormalidades , Rede Nervosa/fisiologia , Estimulação Magnética Transcraniana/métodos , Vias Visuais/anormalidades , Vias Visuais/fisiologia , Animais , Biomarcadores/metabolismo , Mapeamento Encefálico , Efrina-A2/genética , Efrina-A2/metabolismo , Efrina-A5/genética , Efrina-A5/metabolismo , Humanos , Camundongos , Camundongos Knockout , Rede Nervosa/anatomia & histologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Vias Visuais/anatomia & histologia
17.
Cerebellum ; 10(4): 748-57, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21562921

RESUMO

Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the ß4-containing, but not the ß2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum.


Assuntos
Cerebelo/metabolismo , Receptores Nicotínicos/fisiologia , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/fisiologia , Masculino , Agonistas Nicotínicos/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
18.
Age (Dordr) ; 33(4): 565-78, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21222044

RESUMO

A major problem of ageing is progressive impairment of neuronal function and ultimately cell death. Since sex steroids are neuroprotective, their decrease with age may underlie age-related neuronal degeneration. To test this, we examined Purkinje cell numbers, plasma sex steroids and cerebellar neurosteroid concentrations during normal ageing (wild-type mice, WT), in our model of precocious ageing (Rora(+/sg), heterozygous staggerer mice in which expression of the neuroprotective factor RORα is disrupted) and after long-term hormone insufficiency (WT post-gonadectomy). During normal ageing (WT), circulating sex steroids declined prior to or in parallel with Purkinje cell loss, which began at 18 months of age. Although Purkinje cell death was advanced in WT long-term steroid deficiency, this premature neuronal loss did not begin until 9 months, indicating that vulnerability to sex steroid deficiency is a phenomenon of ageing Purkinje neurons. In precocious ageing (Rora(+/sg)), circulating sex steroids decreased prematurely, in conjunction with marked Purkinje cell death from 9 months. Although Rora(+/sg) Purkinje cells are vulnerable through their RORα haplo-insufficiency, it is only as they age (after 9 months) that sex steroid failure becomes critical. Finally, cerebellar neurosteroids did not decrease with age in either genotype or gender; but were profoundly reduced by 3 months in male Rora(+/sg) cerebella, which may contribute to the fragility of their Purkinje neurons. These data suggest that ageing Purkinje cells are maintained by circulating sex steroids, rather than local neurosteroids, and that in Rora(+/sg) their age-related death is advanced by premature sex steroid loss induced by RORα haplo-insufficiency.


Assuntos
Envelhecimento/fisiologia , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Cerebelo/metabolismo , Hormônios Esteroides Gonadais/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Células de Purkinje/fisiologia , Animais , Castração , Contagem de Células , Cerebelo/citologia , Estradiol/sangue , Feminino , Hormônios Esteroides Gonadais/metabolismo , Terapia de Reposição Hormonal , Masculino , Camundongos , Camundongos Mutantes , Camundongos Mutantes Neurológicos , Progesterona/sangue , Células de Purkinje/citologia , Testosterona/sangue
19.
Med Sci (Paris) ; 26(8-9): 724-8, 2010.
Artigo em Francês | MEDLINE | ID: mdl-20819709

RESUMO

Recent in vivo and in vitro studies have used the rodent olivocerebellar path to examine developmental synaptogenesis, in particular the mechanisms which permit the simultaneous stabilisation of some synapses and elimination of others. They reveal that while the formation of synapses can take place throughout life, elimination of supernumerary connections is limited to a critical period during development. Synapse elimination involves the strengthening of appropriate synapses and weakening of others, which are subsequently removed. This process is partly dependent on activity and post-synaptic signalling cascades and irreversibly changes each synaptic partner, leaving a trace of previous connectivity. Here we discuss the nature of this << trace >>, which may be a molecule that labels and protects those synapses to be retained, and its functional significance in maintaining the specificity of neuronal circuits needed for coordinate behaviour. double dagger.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Cerebelo/fisiologia , Humanos , Potenciação de Longa Duração , Fibras Nervosas/fisiologia , Núcleo Olivar/fisiologia
20.
Dev Neurobiol ; 69(10): 647-62, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19551874

RESUMO

Correct neural function depends on precisely organized connectivity, which is refined from broader projections through synaptic/collateral elimination. In the rat, olivocerebellar topography is refined by regression of multiple climbing fiber (CF) innervation of Purkinje cells (PC) during the first two postnatal weeks. The molecules that initiate this regression are not fully understood. We assessed the role of cerebellar neurotrophins by examining tropomycin receptor kinase (Trk) receptor expression in the inferior olive and cerebellum between postnatal days (P)3-7, when CF-PC innervation changes from synapse formation to selective synapse elimination, and in a denervation-reinnervation model when synaptogenesis is delayed. Trks A, B, and C are expressed in olivary neurons; although TrkA was not transported to the cerebellum and TrkC was unchanged during innervation and reinnervation, suggesting that neither receptor is involved in CF-PC synaptogenesis. In contrast, both total and truncated TrkB (TrkB.T) increased in the olive and cerebellum from P4, whereas full-length and activated phosphorylated TrkB (phospho-TrkB) decreased from P4-5. This reveals less TrkB signaling at the onset of CF regression. This expression pattern was reproduced during CF-PC reinnervation: in the denervated hemicerebellum phospho-TrkB decreased as CF terminals degenerated, then increased in parallel with the delayed neosynaptogenesis as new CFs reinnervated the denervated hemicerebellum. In the absence of this signaling, CF reinnervation did not develop. Our data reveal that olivocerebellar TrkB activity parallels CF-PC synaptic formation and stabilization and is required for neosynaptogenesis. Furthermore, TrkB.T expression rises to reduce TrkB signaling and permit synapse elimination.


Assuntos
Cerebelo/fisiologia , Neurônios/fisiologia , Núcleo Olivar/fisiologia , Células de Purkinje/fisiologia , Receptor trkB/metabolismo , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Núcleos Cerebelares/lesões , Núcleos Cerebelares/fisiologia , Cerebelo/lesões , Regeneração Nervosa/fisiologia , Vias Neurais/lesões , Vias Neurais/fisiologia , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor trkA/metabolismo , Receptor trkC/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...